混凝土在現(xiàn)代工程建設(shè)中占有重要地位。而在今天,混凝土的裂縫較為普遍,在橋梁工程中裂縫幾乎無所不在。盡管我們在施工中采取各種措施,小心謹(jǐn)慎,但裂縫仍然時(shí)有出現(xiàn)。究其原因,我們對混凝土溫度應(yīng)力的變化注意不夠是其中之一。
在大體積混凝土中,溫度應(yīng)力及溫度控制具有重要意義。這主要是由于兩方面的原因。首先,在施工中混凝土常常出現(xiàn)溫度裂縫,影響到結(jié)構(gòu)的整體性和耐久性。其次,在運(yùn)轉(zhuǎn)過程中,溫度變化對結(jié)構(gòu)的應(yīng)力狀態(tài)具有顯著的不容忽視的影響。我們遇到的主要是施工中的溫度裂縫,因此本文僅對施工中混凝土裂縫的成因和處理措施做一探討。
裂縫的原因
混凝土中產(chǎn)生裂縫有多種原因,主要是溫度和濕度的變化,混凝土的脆性和不均勻性,以及結(jié)構(gòu)不合理,原材料不合格(如堿骨料反應(yīng)),模板變形,基礎(chǔ)不均勻沉降等。
混凝土硬化期間水泥放出大量水化熱,內(nèi)部溫度不斷上升,在表面引起拉應(yīng)力。后期在降溫過程中,由于受到基礎(chǔ)或老混凝上的約束,又會在混凝土內(nèi)部出現(xiàn)拉應(yīng)力。氣溫的降低也會在混凝土表面引起很大的拉應(yīng)力。當(dāng)這些拉應(yīng)力超出混凝土的抗裂能力時(shí),即會出現(xiàn)裂縫。許多混凝土的內(nèi)部濕度變化很小或變化較慢,但表面濕度可能變化較大或發(fā)生劇烈變化。如養(yǎng)護(hù)不周、時(shí)干時(shí)濕,表面干縮形變受到內(nèi)部混凝土的約束,也往往導(dǎo)致裂縫。混凝土是一種脆性材料,抗拉強(qiáng)度是抗壓強(qiáng)度的1/10左右,短期加荷時(shí)的極限拉伸變形只有(0.6~1.0)×104,長期加荷時(shí)的極限位伸變形也只有(1.2~2.0)×104.由于原材料不均勻,水灰比不穩(wěn)定,及運(yùn)輸和澆筑過程中的離析現(xiàn)象,在同一塊混凝土中其抗拉強(qiáng)度又是不均勻的,存在著許多抗拉能力很低,易于出現(xiàn)裂縫的薄弱部位。在鋼筋混凝土中,拉應(yīng)力主要是由鋼筋承擔(dān),混凝土只是承受壓應(yīng)力。在素混凝土內(nèi)或鋼筋混凝上的邊緣部位如果結(jié)構(gòu)內(nèi)出現(xiàn)了拉應(yīng)力,則須依靠混凝土自身承擔(dān)。一般設(shè)計(jì)中均要求不出現(xiàn)拉應(yīng)力或者只出現(xiàn)很小的拉應(yīng)力。但是在施工中混凝土由最高溫度冷卻到運(yùn)轉(zhuǎn)時(shí)期的穩(wěn)定溫度,往往在混凝土內(nèi)部引起相當(dāng)大的拉應(yīng)力。有時(shí)溫度應(yīng)力可超過其它外荷載所引起的應(yīng)力,因此掌握溫度應(yīng)力的變化規(guī)律對于進(jìn)行合理的結(jié)構(gòu)設(shè)計(jì)和施工極為重要。
根據(jù)溫度應(yīng)力的形成過程可分為以下三個(gè)階段:
(1)早期:自澆筑混凝土開始至水泥放熱基本結(jié)束,一般約30天。這個(gè)階段的兩個(gè)特征,一是水泥放出大量的水化熱,二是混凝上彈性模量的急劇變化。由于彈性模量的變化,這一時(shí)期在混凝土內(nèi)形成殘余應(yīng)力。
(2)中期:自水泥放熱作用基本結(jié)束時(shí)起至混凝土冷卻到穩(wěn)定溫度時(shí)止,這個(gè)時(shí)期中,溫度應(yīng)力主要是由于混凝土的冷卻及外界氣溫變化所引起,這些應(yīng)力與早期形成的殘余應(yīng)力相疊加,在此期間混凝上的彈性模量變化不大。
(3)晚期:混凝土完全冷卻以后的運(yùn)轉(zhuǎn)時(shí)期。溫度應(yīng)力主要是外界氣溫變化所引起,這些應(yīng)力與前兩種的殘余應(yīng)力相迭加。
根據(jù)溫度應(yīng)力引起的原因可分為兩類:
(1)自生應(yīng)力:邊界上沒有任何約束或完全靜止的結(jié)構(gòu),如果內(nèi)部溫度是非線性分布的,由于結(jié)構(gòu)本身互相約束而出現(xiàn)的溫度應(yīng)力。例如,橋梁墩身,結(jié)構(gòu)尺寸相對較大,混凝土冷卻時(shí)表面溫度低,內(nèi)部溫度高,在表面出現(xiàn)拉應(yīng)力,在中間出現(xiàn)壓應(yīng)力。
(2)約束應(yīng)力:結(jié)構(gòu)的全部或部分邊界受到外界的約束,不能自由變形而引起的應(yīng)力。如箱梁頂板混凝土和護(hù)欄混凝土。
這兩種溫度應(yīng)力往往和混凝土的干縮所引起的應(yīng)力共同作用。
要想根據(jù)已知的溫度準(zhǔn)確分析出溫度應(yīng)力的分布、大小是一項(xiàng)比較復(fù)雜的工作。在大多數(shù)情況下,需要依靠模型試驗(yàn)或數(shù)值計(jì)算。混凝土的徐變使溫度應(yīng)力有相當(dāng)大的松馳,計(jì)算溫度應(yīng)力時(shí),必須考慮徐變的影響,具體計(jì)算這里就不再細(xì)述。
為了防止裂縫,減輕溫度應(yīng)力可以從控制溫度和改善約束條件兩個(gè)方面著手。
控制溫度的措施如下:
(1)采用改善骨料級配,用干硬性混凝土,摻混合料,加引氣劑或塑化劑等措施以減少混凝土中的水泥用量;
(2)拌合混凝土?xí)r加水或用水將碎石冷卻以降低混凝土的澆筑溫度;
(3)熱天澆筑混凝土?xí)r減少澆筑厚度,利用澆筑層面散熱;
(4)在混凝土中埋設(shè)水管,通入冷水降溫;
(5)規(guī)定合理的拆模時(shí)間,氣溫驟降時(shí)進(jìn)行表面保溫,以免混凝土表面發(fā)生急劇的溫度梯度;
(6)施工中長期暴露的混凝土澆筑塊表面或薄壁結(jié)構(gòu),在寒冷季節(jié)采取保溫措施;
改善約束條件的措施是:
(1)合理地分縫分塊
(2)避免基礎(chǔ)過大起伏;
(3)合理的安排施工工序,避免過大的高差和側(cè)面長期暴露;
此外,改善混凝土的性能,提高抗裂能力,加強(qiáng)養(yǎng)護(hù),防止表面干縮,特別是保證混凝土的質(zhì)量對防止裂縫是十分重要,應(yīng)特別注意避免產(chǎn)生貫穿裂縫,出現(xiàn)后要恢復(fù)其結(jié)構(gòu)的整體性是十分困難的,因此施工中應(yīng)以預(yù)防貫穿性裂縫的發(fā)生為主。
在混凝土的施工中,為了提高模板的周轉(zhuǎn)率,往往要求新澆筑的混凝土盡早拆模。當(dāng)混凝土溫度高于氣溫時(shí)應(yīng)適當(dāng)考慮拆模時(shí)間,以免引起混凝土表面的早期裂縫。新澆筑早期拆模,在表面引起很大的拉應(yīng)力,出現(xiàn)“溫度沖擊”現(xiàn)象。在混凝土澆筑初期,由于水化熱的散發(fā),表面引起相當(dāng)大的拉應(yīng)力,此時(shí)表面溫度亦較氣溫為高,此時(shí)拆除模板,表面溫度驟降,必然引起溫度梯度,從而在表面附加一拉應(yīng)力,與水化熱應(yīng)力迭加,再加上混凝土干縮,表面的拉應(yīng)力達(dá)到很大的數(shù)值,就有導(dǎo)致裂縫的危險(xiǎn),但如果在拆除模板后及時(shí)在表面覆蓋一輕型保溫材料,如泡沫海棉等,對于防止混凝土表面產(chǎn)生過大的拉應(yīng)力,具有顯著的效果。
加筋對大體積混凝土的溫度應(yīng)力影響很小,因?yàn)榇篌w積混凝土的含筋率極低。只是對一般鋼筋混凝土有影響。在溫度不太高及應(yīng)力低于屈服極限的條件下,鋼的各項(xiàng)性能是穩(wěn)定的,而與應(yīng)力狀態(tài)、時(shí)間及溫度無關(guān)。鋼的線脹系數(shù)與混凝土線脹系數(shù)相差很小,在溫度變化時(shí)兩者間只發(fā)生很小的內(nèi)應(yīng)力。由于鋼的彈性模量為混凝土彈性模量的7~15倍,當(dāng)內(nèi)混凝土應(yīng)力達(dá)到抗拉強(qiáng)度而開裂時(shí),鋼筋的應(yīng)力將不超過100~200kg/cm2。因此,在混凝土中想要利用鋼筋來防止細(xì)小裂縫的出現(xiàn)很困難。但加筋后結(jié)構(gòu)內(nèi)的裂縫一般就變得數(shù)目多、間距小、寬度與深度較小了。而且如果鋼筋的直徑細(xì)而間距密時(shí),對提高混凝土抗裂性的效果較好;炷梁弯摻罨炷两Y(jié)構(gòu)的表面常常會發(fā)生細(xì)而淺的裂縫,其中大多數(shù)屬于干縮裂縫。雖然這種裂縫一般都較淺,但它對結(jié)構(gòu)的強(qiáng)度和耐久性仍有一定的影響。
為保證混凝土工程質(zhì)量,防止開裂,提高混凝土的耐久性,正確使用外加劑也是減少開裂的措施之一。例如使用減水防裂劑,筆者在實(shí)踐中總結(jié)出其主要作用為:
(1)混凝土中存在大量毛細(xì)孔道,水蒸發(fā)后毛細(xì)管中產(chǎn)生毛細(xì)管張力,使混凝土干縮變形。增大毛細(xì)孔徑可降低毛細(xì)管表面張力,但會使混凝土強(qiáng)度降低。這個(gè)表面張力理論早在六十年代就已被國際上所確認(rèn)。
(2)水灰比是影響混凝土收縮的重要因素,使用減水防裂劑可使混凝土用水量減少25%。
(3)水泥用量也是混凝土收縮率的重要因素,摻加減水防裂劑的混凝土在保持混凝土強(qiáng)度的條件下可減少15%的水泥用量,其體積用增加骨料用量來補(bǔ)充。
(4)減水防裂劑可以改善水泥漿的稠度,減少混凝土泌水,減少沉縮變形。
(5)提高水泥漿與骨料的粘結(jié)力,提高的混凝土抗裂性能。
(6)混凝土在收縮時(shí)受到約束產(chǎn)生拉應(yīng)力,當(dāng)拉應(yīng)力大于混凝土抗拉強(qiáng)度時(shí)裂縫就會產(chǎn)生。減水防裂劑可有效的提高的混凝土抗拉強(qiáng)度,大幅提高混凝土的抗裂性能。
(7)摻加外加劑可使混凝土密實(shí)性好,可有效地提高混凝土的抗碳化性,減少碳化收縮。
(8)摻減水防裂劑后混凝土緩凝時(shí)間適當(dāng),在有效防止水泥迅速水化放熱基礎(chǔ)上,避免因水泥長期不凝而帶來的塑性收縮增加。
(9)摻外加劑混凝土和易性好,表面易摸平,形成微膜,減少水分蒸發(fā),減少干燥收縮。
許多外加劑都有緩凝、增加和易性、改善塑性的功能,我們在工程實(shí)踐中應(yīng)多進(jìn)行這方面的實(shí)驗(yàn)對比和研究,比單純的靠改善外部條件,可能會更加簡捷、經(jīng)濟(jì)。
混凝土常見的裂縫,大多數(shù)是不同深度的表面裂縫,其主要原因是溫度梯度造成寒冷地區(qū)的溫度驟降也容易形成裂縫。因此說混凝土的保溫對防止表面早期裂縫尤其重要。
從溫度應(yīng)力觀點(diǎn)出發(fā),保溫應(yīng)達(dá)到下述要求:
1)防止混凝土內(nèi)外溫度差及混凝土表面梯度,防止表面裂縫。
2)防止混凝土超冷,應(yīng)該盡量設(shè)法使混凝土的施工期最低溫度不低于混凝土使用期的穩(wěn)定溫度。
3)防止老混凝土過冷,以減少新老混凝土間的約束。
混凝土的早期養(yǎng)護(hù),主要目的在于保持適宜的溫濕條件,以達(dá)到兩個(gè)方面的效果,一方面使混凝土免受不利溫、濕度變形的侵襲,防止有害的冷縮和干縮。一方面使水泥水化作用順利進(jìn)行,以期達(dá)到設(shè)計(jì)的強(qiáng)度和抗裂能力。
適宜的溫濕度條件是相互關(guān)聯(lián)的;炷系谋卮胧┏3R灿斜竦男Ч
從理論上分析,新澆混凝土中所含水分完全可以滿足水泥水化的要求而有余。但由于蒸發(fā)等原因常引起水分損失,從而推遲或防礙水泥的水化,表面混凝土最容易而且直接受到這種不利影響。因此混凝土澆筑后的最初幾天是養(yǎng)護(hù)的關(guān)鍵時(shí)期,在施工中應(yīng)切實(shí)重視起來。
對混凝土的施工溫度與裂縫之間的關(guān)系進(jìn)行了理論和實(shí)踐上的初步探討,雖然學(xué)術(shù)界對于混凝土裂縫的成因和計(jì)算方法有不同的理論,但對于具體的預(yù)防和改善措施意見還是比較統(tǒng)一,同時(shí)在實(shí)踐中的應(yīng)用效果也是比較好的,具體施工中要靠我們多觀察、多比較,出現(xiàn)問題后多分析、多總結(jié),結(jié)合多種預(yù)防處理措施,混凝土的裂縫是完全可以避免的。
軟土的組成和狀態(tài)特征
軟土泛指淤泥及淤泥質(zhì)土,是第四紀(jì)后期于沿海地區(qū)的濱海相、瀉湖相、三角洲相和溺谷相,內(nèi)陸平原或山區(qū)的湖相和沖擊洪積沼澤相等靜水或非常緩慢的流水環(huán)境中沉積,并經(jīng)生物化學(xué)作用形成的飽和軟粘性土。軟土的組成和狀態(tài)特征是由其生成環(huán)境決定的。由于它形成于上述水流不通暢、飽和缺氧的靜水盆地,這類土主要由粘粒和粉粒等細(xì)小顆粒組成。淤泥的粘粒含量較高,一般達(dá)30%~60%。粘粒的粘土礦物成分以水云母和蒙德石為主,含大量的有機(jī)質(zhì)。有機(jī)質(zhì)含量一般達(dá)5%~15%,最大達(dá)17%~25%。這些粘土礦物和有機(jī)質(zhì)顆粒表面帶有大量負(fù)電荷,與水分子作用非常強(qiáng)烈,因而在其顆粒外圍形成很厚的結(jié)合水膜,且在沉積過程中由于粒間靜電荷引力和分子引力作用,形成絮狀和蜂窩狀結(jié)構(gòu)。所以,軟土含大量的結(jié)合水,并由于存在一定強(qiáng)度的粒間連結(jié)而具有顯著的結(jié)構(gòu)性。
由于軟土的生成環(huán)境及粒度、礦物組成和結(jié)構(gòu)特征,結(jié)構(gòu)性顯著且處于形成初期,呈飽和狀態(tài),這都使軟土在其自重作用下難于壓密,而且來不及壓密。因此,不僅使之必然具有高孔隙性和高含水量,而且使淤泥一般呈欠壓密狀態(tài),以致其孔隙比和天然含水量隨埋藏深度很小變化,因而土質(zhì)特別松軟。淤泥質(zhì)土一般則呈稍欠壓密或正常壓密狀態(tài),其強(qiáng)度有所增大。
淤泥和淤泥質(zhì)土一般呈軟塑狀態(tài),但當(dāng)其結(jié)構(gòu)一經(jīng)擾動(dòng)破壞,就會使其強(qiáng)度劇烈降低甚至呈流動(dòng)狀態(tài)。因此,淤泥和淤泥質(zhì)土的稠度實(shí)際上通常處于潛流狀態(tài)。
軟土的物理力學(xué)特性
1、高含水量和高孔隙性
軟土的天然含水量一般為50%~70%,最大甚至超過200%。液限一般為40%~60%,天然含水量隨液限的增大成正比增加。天然孔隙比在1~2之間,最大達(dá)3~4。其飽和度一般大于95%,因而天然含水量與其天然孔隙比呈直線變化關(guān)系。軟土的如此高含水量和高孔隙性特征是決定其壓縮性和抗剪強(qiáng)度的重要因素。
2、滲透性弱
軟土的滲透系數(shù)一般在i×10-4~i×10-8cm/s之間,而大部分濱海相和三角洲相軟土地區(qū),由于該土層中夾有數(shù)量不等的薄層或極薄層粉、細(xì)砂、粉土等,故在水平方向的滲透性較垂直方向要大得多。
由于該類土滲透系數(shù)小、含水量大且飽和狀態(tài),這不但延緩其土體的固結(jié)過程,而且在加荷初期,常易出現(xiàn)較高的孔隙水壓力,對地基強(qiáng)度有顯著影響。
3、壓縮性高
軟土均屬高壓縮性土,其壓縮系數(shù)a0.1~0.2一般為0.7~1.5MPa-1,最大達(dá)4.5MPa-1(例如渤海海淤),它隨著土的液限和天然含水量的增大而增高。由于土質(zhì)本身的因素而言,該類土的建筑荷載作用下的變形有如下特征:
(1)變形大而不均勻
(2)變形穩(wěn)定歷時(shí)長
4、抗剪強(qiáng)度低
軟土的抗剪強(qiáng)度小且與加荷速度及排水固結(jié)條件密切相關(guān),不排水三軸快剪所得抗剪強(qiáng)度值很小,且與其側(cè)壓力大小無關(guān)。排水條件下的抗剪強(qiáng)度隨固結(jié)程度的增加而增大。
5、較顯著的觸變性和蠕變形。
軟土的鑒別
1、建設(shè)部標(biāo)準(zhǔn)《軟土地區(qū)工程地質(zhì)勘查規(guī)范》(JGJ83-91)規(guī)定凡符合以下三項(xiàng)特征即為軟土:
(1)外觀以灰色為主的細(xì)粒土;
(2)天然含水量大于或等于液限;
(3)天然孔隙比大于或等于1.01。
2、交通部標(biāo)準(zhǔn)《公路軟土地基路堤設(shè)計(jì)與施工技術(shù)規(guī)范》(JTJ017-96)中規(guī)定軟土鑒別見表
(1)天然含水量的測定
天然含水量是土的基本物理性指標(biāo)之一,它反映的土的狀態(tài),含水量的變化將使得土的稠度、飽和程度、結(jié)構(gòu)強(qiáng)度隨之而變化,其測定可采用公路土工試驗(yàn)規(guī)程規(guī)定試驗(yàn)方法測定,并將試驗(yàn)數(shù)據(jù)與35%、液限進(jìn)行比較。
(2)天然孔隙比
孔隙比,是土中孔隙體積與土粒體積之比,天然狀態(tài)下土的孔隙比稱之為天然孔隙比,是一個(gè)重要的物理性指標(biāo),可用來評價(jià)天然土層的密實(shí)程度。其測定方法可測定土粒比重、土的干密度、土的天然密度、土的含水量等指標(biāo)通過計(jì)算而得。
(3)十字板剪切強(qiáng)度[3]
十字板剪切試驗(yàn)是原位測試技術(shù)中一種發(fā)展較早、技術(shù)比較成熟得方法。試驗(yàn)時(shí)將十字板頭插入土中,以規(guī)定的旋轉(zhuǎn)速率對側(cè)頭施加扭力,直到將土剪損,測出十字板旋轉(zhuǎn)時(shí)所形成的圓柱體表面處土的抵抗扭矩,從而可算出土對十字板的不排水抗剪強(qiáng)度。